Exercise 7

Sketch the following surfaces:
(a) $z=r^{2}$
(b) $\rho=4 \csc \phi \sec \theta$
(c) $r=4 \sin \theta$
(d) $\rho \sin \phi=2$

Solution

Part (a)

Part (b)

$$
\rho=4 \csc \phi \sec \theta
$$

Write the equation in terms of sine and cosine.

$$
\rho=\frac{4}{\sin \phi \cos \theta}
$$

Multiply both sides by $\sin \phi \cos \theta$.

$$
\rho \sin \phi \cos \theta=4
$$

Substitute $x=\rho \sin \phi \cos \theta$.

$$
x=4
$$

Part (c)

$$
r=4 \sin \theta
$$

Change this to Cartesian coordinates by substituting $r=\sqrt{x^{2}+y^{2}}$ and $y=r \sin \theta$.

$$
\sqrt{x^{2}+y^{2}}=4\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)
$$

Multiply both sides by $\sqrt{x^{2}+y^{2}}$.

$$
x^{2}+y^{2}=4 y
$$

Bring $4 y$ to the left side and complete the square.

$$
\begin{gathered}
x^{2}+y^{2}-4 y=0 \\
x^{2}+y^{2}-4 y+4=4 \\
x^{2}+(y-2)^{2}=4
\end{gathered}
$$

This is a circle centered at $(0,2)$ with a radius of 2 .

In three dimensions this is actually a cylinder that extends indefinitely in the z-direction.

Part (d)

$$
\rho \sin \phi=2
$$

Square both sides.

$$
\begin{gathered}
\rho^{2} \sin \phi^{2}=4 \\
\rho^{2} \sin \phi^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=4 \\
\rho^{2} \sin \phi^{2} \cos ^{2} \theta+\rho^{2} \sin \phi^{2} \sin ^{2} \theta=4
\end{gathered}
$$

Substitute $x=\rho \sin \phi \cos \theta$ and $y=\rho \sin \phi \sin \theta$.

$$
x^{2}+y^{2}=4
$$

This is a circle centered at $(0,0)$ with radius 2 .

In three dimensions this is actually a cylinder that extends indefinitely in the z-direction.

